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A B S T R A C T   

Soil, as a non-renewable resource, should be monitored continuously to prevent its degradation and promote 
sustainable agriculture. Soil spectroscopy in the visible-near infrared range is a fast and cost-effective analytical 
technique to predict soil properties. Although traditional machine learning methods are widely used for 
modeling soil spectral data, large spectral datasets may require better analytical methods for big data. Here, we 
explored the modeling potential of deep convolutional neural networks (DCNNs) for soil properties based on a 
large soil spectral library. The European topsoil dataset provided by the Land Use/Cover Area frame Survey 
(LUCAS) was used for DCNN modeling with the original absorbance spectra. Two single-task 16-layer DCNN 
models (LucasResNet-16 and LucasVGGNet-16) were used to make regression predictions of seven soil properties 
and classification predictions of soil texture. The effects of data pre-processing on single-task and multi-task 
DCNN modeling were assessed. The SHapley Additive exPlanations method was used to interpret the output 
of a DCNN model (LucasResNet-16). The DCNN models produced accurate predictions for most soil properties, 
and were superior to a single-task shallow convolutional neural network and traditional machine learning 
methods. Spectral transformation was effective for predicting some soil properties, while spectral downsampling 
led to a reduction in the modeling accuracy. The performance of a multi-task DCNN model built on the basis of 
LucasResNet-16 was improved compared with the performance of the single-task model. Soil organic carbon 
content, nitrogen content, cation exchange capacity, pH, and calcium carbonate content were well predicted, 
with the root mean squared error of 19.130 g∙kg− 1, 0.971 g∙kg− 1, 6.614 cmol(+)∙kg− 1, 0.326, and 24.526 
g∙kg− 1, respectively. The overall classification accuracy of soil texture was 0.749 (four groups) and 0.566 (12 
levels). The position of feature wavelengths differed among the soil properties, for which multiple characteristic 
peaks were common. This study fully demonstrates the modeling potential of deep learning with soil ultra-
spectral data, which could enhance precision agriculture.   

1. Introduction 

Soil is the loose surface portion of the earth’s crust that provides 
water and nutrients for uptake by plants. Underpinning all agricultural 
production, soil is the basis of crop growth, and is a natural resource for 
human survival (Sanchez et al., 2009). However, soil fertility varies 
across and within regions. If our incomplete knowledge of soil properties 

is not soon rectified, either excessive or insufficient fertilization will 
ensue during the plant-growing season. Inappropriate fertilization not 
only affects crop growth, but also creates potential problems, such as 
wasted resources, environmental pollution, and land degradation (Lal, 
2004; Hartemink, 2015). A prerequisite for precision agriculture is the 
fast and accurate acquisition of information on soil properties and 
subsequent development of rational fertilization strategies. 
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Implementing these strategies can ensure sustainable agricultural pro-
duction, improve crop yield, and protect the ecological environment 
(Moran et al., 1997; Wetterlind et al., 2010). 

Due to the high cost and low efficiency of traditional field sampling 
and laboratory testing methods, it is near impossible to achieve large- 
scale and real-time monitoring of dynamic soil properties (Araújo 
et al., 2014). In recent years, soil spectroscopy in the visible-near 
infrared (Vis-NIR) range has established itself as a fast and cost- 
effective alternative to traditional empirical methods for predicting 
soil properties (Islam et al., 2003; Guerrero et al., 2015). Many studies 
have proven that high-precision estimation of soil properties at local and 
regional scales can be achieved using the Vis-NIR spectroscopy tech-
nique (Gogé et al., 2012; Viscarra Rossel et al., 2016; Romero et al., 
2018). Furthermore, numerous machine learning models have been 
calibrated from local soil spectral databases, resulting in independent 
small-scale models (Stevens et al., 2013). 

Site-specific correlations exist between spectral features and soil 
properties, while the calibration model parameters are often region- 
specific. As a result, model conversion between different soil sample 
sets is generally unsuccessful (Grunwald et al., 2018). Therefore, recent 
research has increasingly used soil spectral libraries at the global (Vis-
carra Rossel et al., 2016), continental (Stevens et al., 2013), or national 
(Brodský et al., 2011; Shi et al., 2014) scale to predict soil properties. 
However, when using a larger regional spectral library, the prediction 
accuracy of soil properties tends to be diminished. This problem is 
mainly attributed to the differential nonlinear relationships of soil 
properties with the spectra, greater variance over wider gradients, and 
non-standardized spectral analysis leading to larger errors (Stenberg 
et al., 2010; Nocita et al., 2014; Castaldi et al., 2018). 

The Land Use/Cover Area frame Survey (LUCAS) soil spectral li-
brary, developed by the European Union as an evolving database, is 
considered the world’s largest unified, open-access dataset of topsoil 
properties (Panagos et al., 2012; Orgiazzi et al., 2018). So, it is reason-
able to anticipate that predicting soil properties using the LUCAS soil 
spectral library should entail high reliability. The fact is, however, 
ultraspectral data contain thousands of wavelengths with strong 
collinearity and complex relationship among them, whereas the pro-
cessing capabilities of traditional machine learning methods are limited. 
Therefore, those traditional modeling methods must resort to cumber-
some pre-processing work of the spectra before extracting the feature 
wavelengths related to soil properties (Zhong et al., 2021). 

Deep learning, as represented by convolutional neural networks 
(CNNs), is a family of computational methods that can extract features, 
layer by layer, via convolution and pooling. Because CNNs are charac-
terized by weight sharing and local connections, the number of cali-
bration parameters needed is reduced, which facilitates model 
optimization (Lecun et al., 2015). Veres et al. (2015) first applied deep 
learning to soil spectroscopy, and demonstrated that a one-dimensional 
(1D) CNN is effective at predicting specific soil properties. Later, some 
researchers also used 1D CNNs based on the LUCAS soil spectral library. 
For example, Liu et al. (2018) applied migration learning to predict the 
clay content of mineral soil samples, while Riese and Keller (2019) were 
able to classify soil texture into four groups. 

Recently, Singh and Kasana (2019) used a 1D long short-term 
memory (LSTM) model to predict six soil physical and chemical prop-
erties from the LUCAS spectral library. Additionally, Padarian et al. 
(2019a,b) converted the original spectra of the LUCAS database into a 
two-dimensional (2D) spectrogram, and then used a 2D multi-task CNN 
to predict six soil properties. Furthermore, Tsakiridis et al. (2020) 
developed a local multi-channel 1D CNN to predict 10 soil physical and 
chemical properties from the LUCAS spectral library. They also 
explained the process by which soil clay content was modeled. While the 
previous studies relied on a relatively shallow CNN model (<10 layers), 
the LUCAS spectral library contains nearly 20,000 samples, each having 
up to 4200 spectral wavelengths. With such big data, a deep convolu-
tional neural network (DCNN) architecture is perhaps more appropriate 

and effective than a shallow CNN. 
Therefore, the purpose of this study was to explore the modeling 

potential of DCNNs for soil properties when applied to the LUCAS soil 
spectral library. First, we introduced the conventional architecture and 
working mechanism of a CNN. Second, we built 16-layer DCNN models 
and implemented them for regression modeling of seven soil properties 
and classification modeling of soil texture using only the original 
absorbance spectra from the soil spectral library. The results were 
compared with those obtained by traditional machine learning methods 
and previous research findings. We also assessed the effects of data pre- 
processing on single-task and multi-task DCNN modeling. Finally, we 
analyzed the relative importance of feature wavelengths extracted by a 
DCNN model to soil properties. 

2. Materials and methods 

2.1. Modeling methods 

2.1.1. DCNN 
The procedure for CNN modeling of soil properties using spectral 

data is sketched in Fig. 1a. First, soil spectral data are organized as a 
matrix to fit the learning architecture of the CNN model. Next, the 
convolutional layer extracts the features of the input data via multiple 
convolutional kernels of a certain size and corresponding step size. The 
pooling layer, also called the downsampling layer, then replaces the 
values of the original range with the maximum or mean values of a 
certain size-sampling range. This step lessens the data for processing, 
while retaining key feature information. Finally, the fully connected 
layer, coming after the convolutional and pooling layers, non-linearly 
combines the extracted features to produce the output results. The 
hyperparameters are mainly the number of neurons used, and the output 
layer comprises the regression values or classification classes of the 
predicted soil properties. 

The training dataset is calibrated and validated once for every epoch. 
Specifically, the entire learning process updates the weighted parameter 
values in an iterative manner through continuous epoch cycles, which 
minimizes the loss function value and thereby engages in autonomous 
learning (Petersson et al., 2016). During the model building, the acti-
vation function is typically situated behind the convolutional and fully 
connected layers, where it implements a nonlinear activation function to 
improve the model’s expressive ability. An optimizer calculates and 
updates the model parameters to better approximate or reach their 
optimal range and further minimize loss. To prevent model overfitting, 
the dropout and early-stopping mechanisms respectively mask out a 
portion of neurons per calibration batch and halt the model prematurely 
if the loss function is not sufficiently enhanced by certain patience 
during calibration. 

Two single-task DCNN models, this study proposed LucasVGGNet-16 
(Fig. 1b) and LucasResNet-16 (Fig. 1d),. To strengthen their effective-
ness and comparability, the models were adjusted to the same number of 
layers (i.e., 16 layers) and a similar number of parameters for calibration 
(~1.3 million). LucasVGGNet-16 (Simonyan and Zisserman, 2014) 
consists of 13 convolutional layers, five pooling layers, and three fully 
connected layers. LucasResNet-16 (He et al., 2016) contains four re-
sidual blocks (Fig. 1c), two pooling layers, and three fully-connected 
layers, with each residual block harboring three convolutional layers. 
The chief advantage of LucasResNet-16 is conferred by the residual 
block arising from cross-layer connections that can overcome gradient 
disappearance in a DCNN. Moreover, a multi-task model, multi- 
LucasResNet-16 (Fig. 1e), was built on the basis of LucasResNet-16 by 
sharing convolution and pooling layers. After the “shared layers” 
extracted the features of soil spectra, the information was directed to 
different branches, one for each target soil property (Padarian et al., 
2019a). 

The three DCNN models built in this study have several fixed func-
tions and hyperparameter settings. Sigmoid is used as an activation 
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function for the output layer, while Tanh is used for other layers; the 
optimizer is Nadam; the batch size is 32; the learning rate is 0.0001; the 
patience is 100 epochs; the number of neurons in the fully-connected 
layer is 200 and 100, with dropout introduced into the fully- 
connected layer to randomly inactivate 30% of the neurons. Once the 
regression modeling is implemented, the soil property value is normal-
ized by dividing the maximum value before its input to the model. An 
inverse normalization step is executed to obtain the predicted value by 
multiplying the maximum value after the model’s output. For the clas-
sification modeling, one-hot coding is done before inputting the soil 
texture class into each model, and the output layer is simply the pre-
diction probability of each class in either four groups or 12 levels. The 
soil texture having the largest value is deemed the predicted class. In this 
study, the DCNN models were implemented in Python v3.7.3 (http 
s://www.python.org/) using deep learning Keras framework. The code 
can be found at https://github.com/ZhongL1007/DCNNs. 

2.1.2. Traditional machine leaning methods 
Rooted in statistical learning theory, the support vector machine 

(SVM) maps data to high-dimensional feature space via a kernel func-
tion. SVM distinguishes a hyperplane serving as a decision boundary on 
which the prediction error is minimized (Burges, 1998). Additionally, 
partial least squares regression (PLSR) combines the advantages of 
principal component analysis, typical correlations, and multiple linear 
regression. PLSR is especially advantageous when applied to a multi-
collinearity predictor variable matrix composed of data. In this case, 

prediction and observation variables are projected onto a new data 
space to maximize their covariance (Wold et al., 2001). Furthermore, 
random forest (RF) is an ensemble learning method that builds multiple 
decision tree models. The final result of RF is determined by an average 
or majority voting principle for a single model result, and this method is 
often used for classification purposes (Breiman, 2001). 

We optimized the parameters of the three traditional machine 
learning models (SVM, PLSR, and RF) using parameter iteration and 5- 
fold cross-validation (Zhang et al., 2019a). For the SVM model, we 
used radial basis function as kernel function. We optimized penalty 
parameter from a list of 1, 10, 50, 100, 200, 500, and 1000, and the 
parameter gamma from a list of 0.0001, 0.0005, 0.001, 0.005, 0.01, 
0.05, and 0.1. For the PLSR model, we iterated the first 100 principal 
components and selected the principal components when the accuracy 
tended to be smooth. For the RF model, we optimized the number of 
decision trees from a list of 50, 100, and 200, and the maximum depth of 
the tree from 3 to 10. In addition, the optimal parameters were deter-
mined considering the relative influence of model overfitting. The SVM, 
PLSR, and RF models were run in the corresponding machine learning 
modules of the Sklearn interface in Python v3.7.3. 

2.2. Model assessment 

In the regression modeling, the coefficient of determination (R2; Eq. 
(1)), RMSE (Eq. (2)), were used to assess the goodness-of-fit and accu-
racy. The larger the R2 and the smaller the RMSE, the better the 

Fig. 1. The convolutional neural network model architecture in its conventional form (a), the LucasVGGNet-16 architecture (b), the residual block (c), the 
LucasResNet-16 architecture (d), and the multi-LucasResNet-16 architecture (e). Input(1,4200) denotes a spectral matrix with 1 row and 4200 columns; 2 × Conv 
(1,3)-1–6 denotes two convolutional layers present, each with the convolutional kernel size of (1,3), the step size of 1, and the number of convolutional kernels of 6; 
Maxpool(1,2)-2 denotes the maximum pooling layer, for which the pooling range is (1,2) and the step size is 2; FC-200(Dropout-0.3) indicates the fully-connected 
layer consisting of 200 neurons, 30% of which are inactivated at random; Output(1) corresponds to the output value for a given soil property; Residual block(6,6,12) 
states that the number of convolution kernels in that residual block is 6, 6, and 12 (respectively for its layers), and so on for the other model components. 
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prediction performance and stability of the fitted model. In the classi-
fication modeling, the results were assessed on the basis of overall ac-
curacy and recall. Overall accuracy is defined as the number of correctly 
classified samples divided by the total number of samples tested; like-
wise, recall of a class is the number of correctly classified samples 
divided by the total number of samples of that class. 

R2 = 1 −
∑n

i=1
(yi − ŷi)

2
/
∑n

i=1
(yi − y)2 (1)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(2) 

where n is the number of samples, yi is the observed value,ŷiis the 
predicted value, yis the mean of the observed values, and SDy is the 
standard deviation of the observed values. 

2.3. LUCAS soil spectral library 

The topsoil dataset provided by LUCAS is a European-scale soil 
spectral library, whose aim is to create the first unified and comparable 
soil database for Europe and support policy development (Tóth et al., 
2013; Orgiazzi et al., 2018). In 2009, approximately 20,000 topsoil 
samples were collected in 25 European countries using standardized 
sampling procedures. All these samples were analyzed using standard 
testing methods in laboratories certified by the International Organiza-
tion for Standardization. Twelve physical and chemical properties of the 
topsoil samples were determined, of which 10 main soil properties were 
selected in the present study, namely, organic carbon (OC) content, ni-
trogen (N) content, phosphorous (P) content, potassium (K) content, 
cation exchange capacity (CEC), pH measured in water (pH), calcium 
carbonate (CaCO3) content, clay content (<0.002 mm), silt content 
(0.02–0.002 mm), and sand content (2–0.02 mm). The absorbance 
spectra were measured using a FOSS XDS rapid content analyzer (Foss 
NIR Systems Inc., Laurel, MD, USA) after the samples had been air-dried 
and sieved (≤2 mm). The spectral range and resolution were 
400.0–2499.5 nm and 0.5 nm, respectively. A total of 4200 wavelengths 
were recorded per sample. 

To analyze the effects of data pre-processing on DCNN modeling, we 
applied spectral pre-processing to the original absorbance spectra based 
on previous studies (Ng et al., 2019; Padarian et al., 2019a; Tsakiridis 
et al., 2020; Tziolas et al., 2020; Zhang et al., 2019a). First, only spectral 
transformations were performed using six common methods: i) a zero- 
order Savitzky-Golay filter with a window width of 50 (Abs-SG0); ii) 
SG0 followed by the standard normal variate (Abs-SG0-SNV); iii) a first- 
order Savitzky-Golay filter with a window width of 50 (Abs-SG1); iv) 
SG1 followed by the standard normal variate (Abs-SG1-SNV); v) a 
second-order Savitzky-Golay filter with a window width of 50 (Abs- 
SG2); vi) SG2 followed by the standard normal variate (Abs-SG2-SNV). 
Second, spectral dimensionality reductions were performed on the basis 
of spectral transformations. Due to the presence of noise, the 400–499.5 
nm and 2450–2499.5 nm wavelength ranges were removed. Then the 
data were downsampled by retaining one value every 10 nm, thus 
leaving 195 data points after pre-processing. 

Based on the LUCAS database, we aimed to model soil properties 
using only the spectral data without any prior information on the sam-
ples. Therefore, we implemented the modeling for organic and mineral 
soil samples together to explore the potential of DCNNs for predicting 
soil properties. In this way, a DCNN model with broader applicability 
could be obtained. 

2.4. Spectral feature extraction 

Proposed by Lundberg and Lee (2017), SHapley Additive exPlana-
tions (SHAP) is an interpretable method that takes the classical Shapley 
values from game theory (Lipovetsky and Conklin, 2001). These values 

are linked to a local interpretation to derive a unified method for 
interpreting the output of machine learning models, enabling SHAP to 
rank the relative importance of features. The SHAP value indicates the 
relative contribution (positive or negative) of each feature in a given 
sample to the model’s output. By calculating the SHAP value for each 
wavelength in the DCNN model, the respective relative contribution is 
obtainable, providing a basis to extract the spectral features. Recently, 
Padarian et al. (2020) demonstrated the successful use of SHAP values 
for interpreting digital soil mapping models. Haghi et al. (2021) iden-
tified and interpreted the important wavelengths that were used by the 
Cubist and CNN models to predict soil properties. Here, we calculated 
the SHAP values by calling the DeepExplainer module in the SHAP 
interface. Suppose the i-th sample is xi and the j-th feature of the i-th 
sample is xij; the model predicted value for this sample set would beŷi, 
for which ϕ0 is the base value of the entire model (i.e., usually the mean 
of the target variables of all samples), with the SHAP value f(xij) for xij 
obeying Eq. (3): 

ŷi = ϕ0+ f (xi1)+ f (xi2)+ ...+ f (xij) (3)  

3. Results 

3.1. Descriptive statistics of soil properties 

The LUCAS dataset contained 19,036 samples of spectral wave-
lengths, spanning 23 countries. A total of 10 soil properties were 
selected for analysis: OC content, N content, P content, K content, CEC, 
pH, CaCO3 content, clay content, silt content, and sand content. In 
screening them for outliers, we found that soil K content was missing for 
one sample and soil particle size was missing for 1097 samples. After 
these outliers were eliminated, 75% and 25% of the dataset was 
randomly assigned to serve as training and testing sets, respectively. At 
each epoch, 20% of the training samples were randomly selected as the 
validation set and the remaining 80% as the calibration set. The 
descriptive statistics of the 10 soil properties in the two sets of samples 
are summarized in Table 1. The range of each soil property was large. 
The mean and standard deviation of the soil properties were similar in 
the training and testing sets, indicating their relatively uniform 
distribution. 

Soil texture was classified into four groups and 12 levels in terms of 
the contents of clay, silt, and sand (Table 2). In the four groups of 
classification, the sample sizes of sand, loam, clay loam, and clay were 
1220, 6924, 4949, and 4846, respectively. Among the 12 levels of 
classification, all soil texture classes were found in the dataset. Sandy 
clay and heavy clay had relatively few samples, whereas the others had a 
sample size of > 500, with sandy loam being most frequent (n = 4625). 
The ratio of training to testing sample sizes of each soil texture class was 
close to 3:1. The triangular diagram of soil texture shows the distribu-
tion of the training and testing samples (Fig. 2). 

3.2. Comparison of DCNNs with traditional regression methods 

Regression predictions were carried out for seven soil properties (OC, 
N, P, K, CEC, pH, and CaCO3) using four different models (LucasResNet- 
16, LucasVGGNet-16, SVM, and PLSR). The testing set accuracy of the 
models was compared in terms of R2 and RMSE (Table 3). When pre-
dicting the soil properties, LucasResNet-16 or LucasVGGNet-16 yielded 
considerably better prediction accuracy than SVM or PLSR. Despite their 
similar accuracy, compared with LucasVGGNet-16, the overall predic-
tion performance of LucasResNet-16 was slightly better for most soil 
properties. DCNN modeling performed well in predicting soil OC con-
tent, N content, CEC, pH, and CaCO3 content (R2 = 0.763–0.960). Soil K 
content was adequately predicted (R2 = 0.591), and soil P content was 
poorly predicted (R2 = 0.367). 

Scatter plots of the measured and predicted values for the seven soil 
properties in the LucasResNet-16 model are shown in Fig. 3. Low biases 
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were observed for soil OC content, N content, CEC, pH, and CaCO3 
content, while high biases were observed for soil P and K contents. The 
predicted values tended to underestimate the measured values of all 
properties, and the prediction error was greater for higher measured 
values where there were fewer data. 

3.3. Comparison of DCNNs with traditional classification methods 

Classification predictions were made for four groups and 12 levels of 
soil texture using four different models (LucasResNet-16, LucasVGGNet- 
16, SVM, and RF). Table 4 provides information on the overall classifi-
cation accuracy of the models for the calibration and testing sets. In both 
cases (four groups and 12 levels), LucasResNet-16 and LucasVGGNet-16 
were considerably more accurate than either SVM or RF. While 
LucasVGGNet-16 performed slightly better than LucasResNet-16, there 
was greater divergence between the calibration and testing of 
LucasVGGNet-16, indicating more pronounced overfitting. Since there 
was less risk of overfitting by LucasResNet-16, this model had higher 
applicability for soil texture classification. The overall testing set accu-
racy of LucasResNet-16 for the four groups of soil texture was 0.749. 
After subdividing soil texture into the 12 levels, the overall testing set 
accuracy of LucasResNet-16 was reduced to just 0.566. 

Using a confusion matrix, the recall was calculated for the four 
groups of soil texture classified by the LucasResNet-16 model (Fig. 4a). 
Loam had the highest accuracy with a recall of 0.84, followed by clay 
with a recall of 0.75, below which were clay loam (0.65) and sand 
(0.63). Moreover, sand was easily mistaken for loam (0.36), and likewise 
loam for clay loam (0.11), clay loam for either loam (0.22) or clay 
(0.13), while clay was easily mistaken for clay loam (0.22). The recall 
was also calculated for the 12 levels of soil texture classified by the 
LucasResNet-16 model (Fig. 4b). Compared with the other soil texture 
classes, sand and loamy sand, sandy loam, and clay were better classified 
with a recall of 0.61, 0.75, and 0.64, respectively. Clay loam, silty clay 
loam, loamy clay, and silty clay had a slightly lower recall of 0.54–0.56, 
while the recall of silty loam was even lower, at 0.47. However, it was 
more difficult to classify loam (0.09) and sandy clay loam (0.13), with 
neither sandy clay nor heavy clay classifiable at all. Furthermore, 
mistaken classifications into similar soil texture classes were prone to 
occur on the abscissa, especially as the following five classes: sandy 
loam, clay loam, silty clay loam, loamy clay, and silty clay. 

The prediction results of the LucasResNet-16 model for soil texture 
are presented in triangular diagrams (Fig. 5), conveying the distribution 
of correctly versus incorrectly predicted samples. For the four groups of 
soil texture, the incorrectly predicted samples were mainly distributed 
near the boundary of each class, with clay mostly near the clay loam, 
loam concentrated near the clay loam and sand, and sand often found 
near the loam (Fig. 5a). For the 12 levels of soil texture, many samples 
with incorrect predictions could also be found near the boundary of each 
soil texture class and their intersection (Fig. 5b). 

3.4. Effects of data pre-processing on DCNN modeling 

We tested the results of the single-task LucasResNet-16 and multi- 
task multi-LucasResNet-16 models based on the original spectra (4200 
data points) and downsampled spectra (195 data points) with different 
spectral transformations. The performance of the best spectral pre- 

Table 1 
Descriptive statistics of 10 soil properties in the LUCAS dataset.  

Soil properties Valid samples Training Testing 

Samples Min Max Mean Standard deviation Samples Min Max Mean Standard deviation 

OC/g∙kg− 1 19,036 14,277  0.00  586.80  50.26  91.66 4759  0.00  577.00  49.23  90.24 
N/g∙kg− 1 19,036 14,277  0.00  36.20  2.94  3.76 4759  0.00  38.60  2.89  3.75 
P/mg∙kg− 1 19,036 14,277  0.00  1366.40  30.01  33.42 4759  0.00  431.90  30.27  31.10 
K/mg∙kg− 1 19,035 14,276  0.00  7342.00  196.97  236.86 4759  0.00  3059.30  197.29  204.94 
CEC/cmol(+)∙kg− 1 19,036 14,277  0.00  227.70  15.84  14.46 4759  0.00  234.00  15.51  14.56 
pH 19,036 14,277  3.40  9.75  6.20  1.36 4759  3.21  10.08  6.19  1.35 
CaCO3/g∙kg− 1 19,036 14,277  0.00  909.00  51.68  125.72 4759  0.00  944.00  51.36  124.10 
Clay/% 17,939 13,454  0.00  79.00  18.89  13.02 4485  0.00  76.00  18.86  12.97 
Silt/% 17,939 13,454  0.00  92.00  38.31  18.82 4485  1.00  88.00  37.98  18.34 
Sand/% 17,939 13,454  1.00  99.00  42.80  26.08 4485  1.00  99.00  43.14  26.17 

OC, organic carbon; N, nitrogen; P, phosphorus; K, potassium; CEC, cation exchange capacity. 

Table 2 
Classification of soil texture in the LUCAS dataset.  

Four groups of 
classification 

12 levels of 
classification 

All 
samples 

Training 
samples 

Testing 
samples 

Sand Sand and loamy 
sand 

1220 908 312 

Loam Sandy loam 4625 3448 1177  
Loam 991 751 240  
Silty loam 1308 1004 304 

Clay loam Sandy clay loam 524 391 133  
Clay loam 2019 1505 514  
Silty clay loam 2406 1808 598 

Clay Sandy clay 24 18 6  
Loamy clay 1744 1297 447  
Silty clay 2320 1752 568  
Clay 710 534 176  
Heavy clay 48 38 10 

Total 17,939 13,454 4485  

Fig. 2. Distribution of soil texture in the LUCAS dataset.  
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Table 3 
The testing set accuracy of four different models for seven soil properties.  

Soil properties Assessment indicators LucasResNet-16 LucasVGGNet-16 SVM PLSR 

OC R2  0.952  0.953  0.906  0.906  
RMSE  19.837  19.612  27.618  27.732 

N R2  0.935  0.934  0.820  0.859  
RMSE  0.957  0.960  1.589  1.409 

P R2  0.367  0.386  − 2.160  0.282  
RMSE  24.743  24.365  55.283  26.347 

K R2  0.591  0.494  − 2.043  0.394  
RMSE  131.071  145.717  357.512  159.548 

CEC R2  0.763  0.772  0.531  0.712  
RMSE  7.089  6.953  9.969  7.816 

pH R2  0.938  0.936  0.833  0.876  
RMSE  0.334  0.340  0.550  0.473 

CaCO3 R2  0.960  0.955  0.843  0.903  
RMSE  24.908  26.458  49.110  38.649 

R2, coefficient of determination; RMSE, root mean squared error; SVM, support vector machine; PLSR, partial least squares regression. 

Fig. 3. Scatter plots of measured and predicted values for seven soil properties in the LucasResNet-16 model. (a) organic carbon (OC) content; (b) nitrogen (N) 
content; (c) phosphorus (P) content; (d) potassium (K) content; (e) cation exchange capacity (CEC); (f) pH; (g) calcium carbonate (CaCO3) content. 
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Table 4 
The overall classification accuracy of four different models for soil texture.  

Soil texture Assessment indicators LucasResNet-16 LucasVGGNet-16 SVM RF 

Four groups of classification Calibration set accuracy  0.803  0.853  0.696  0.596 
Testing set accuracy  0.749  0.760  0.678  0.553 

12 levels of classification Calibration set accuracy  0.628  0.709  0.507  0.414 
Testing set accuracy  0.566  0.589  0.489  0.382 

RF, random forest. 

Fig. 4. Recall from the confusion matrix for (a) four groups and (b) 12 levels of soil texture classification by the LucasResNet-16 model (testing set).  
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processing source is given (Table 5, Fig. 6). With regard to spectral 
transformation, single-task modeling achieved the highest accuracy for 
some soil properties (e.g., OC, N, and CaCO3) based on the original 
absorbance spectra. SG1 was the best source of spectral transformation 
for some soil properties when modeling with 4200 data points. How-
ever, the best source of spectral transformation varied with soil prop-
erties when modeling with 195 data points. After spectral 
downsampling, the modeling accuracy of all soil properties decreased to 
different degrees. 

Multi-task modeling based on the original absorbance spectra ach-
ieved the highest modeling accuracy in both cases of spectral pre- 
processing. After spectral downsampling, the modeling accuracy of all 
soil properties also decreased to different degrees. Compared with 
single-task modeling, the prediction performance of multi-task modeling 
was slightly improved for most soil properties. The results showed that 
spectral transformation was effective for the prediction of specific soil 
properties, while spectral downsampling caused a reduction in the 
modeling accuracy. The multi-task DCNN model improved the modeling 
performance compared with the single-task DCNN model. 

3.5. Contribution of feature wavelengths to soil properties 

We calculated the SHAP value of each wavelength in the testing set of 
the LucasResNet-16 model, and obtained the averaged relative contri-
bution from feature wavelengths to each soil property (Fig. 7). The 
relative contribution and position of feature wavelengths were different 
among the soil properties and characterized by multiple characteristic 
peaks. The top 10 feature wavelengths that contributed most to each soil 
property were extracted (Table 6). The distributions of these feature 
wavelengths could be roughly summarized as follows: for OC, they were 
concentrated around 2309 and 2180 nm; likewise, for N, around 2055, 
2393, 783, and 595 nm; for P, around 667, 931, 1716, and 1960 nm; for 
K, around 2106, 674, 874, and 1986 nm; for CEC, around 2178, 2347, 
1731, 584, and 1418 nm; for pH, around 722, 2010, and 1666 nm; for 
CaCO3, around 1998 nm. Considering soil texture, the four groups of 
classification had wavelengths mainly around 1414, 2208, 1358, and 
2376 nm, while wavelengths of the 12 levels predominated around 
1415, 2377, and 1369 nm. 

Fig. 5. Distribution of soil texture predicted by the LucasResNet-16 model for the four groups (a) and the 12 levels (b) of classification.  

Table 5 
The testing set accuracy of the LucasResNet-16 and multi-LucasResNet-16 models for prediction of soil properties based on the original spectra (4200 data points) and 
downsampled spectra (195 data points) in the best spectral pre-processing source.  

Soil properties Assessment indicators LucasResNet-16 (single-task DCNN) multi-LucasResNet-16 (multi-task DCNN) 

4200 data points 195 data points 4200 data points (Best source: Abs) 195 data points (Best source: Abs) 

OC R2 Abs 0.952 Abs 0.940 0.955 0.947  
RMSE  19.837  22.136 19.130 20.803 

N R2 Abs 0.935 Abs 0.911 0.933 0.916  
RMSE  0.957  1.115 0.971 1.087 

P R2 Abs-SG1 0.372 Abs-SG1-SNV 0.285 0.395 0.250  
RMSE  24.649 26.305 24.184 26.937 

K R2 Abs 0.591 Abs-SG2-SNV 0.523 0.593 0.397  
RMSE  131.071 141.471 130.706 159.093 

CEC R2 Abs-SG1 0.822 Abs-SG0 0.768 0.794 0.771  
RMSE  6.142  7.013 6.614 6.966 

pH R2 Abs-SG1 0.941 Abs-SG2-SNV 0.914 0.942 0.897  
RMSE  0.327 0.395 0.326 0.432 

CaCO3 R2 Abs 0.960 Abs 0.931 0.961 0.912  
RMSE  24.908  32.555 24.526 36.795 

Abs, original absorbance spectra; SG0, zero-order Savitzky-Golay filter with a window width of 50; SG1, first-order Savitzky-Golay filter with a window width of 50; 
SG2, second-order Savitzky-Golay filter with a window width of 50; SNV, standard normal variate. 
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Fig. 6. Histogram of the testing set accuracy of the LucasResNet-16 and multi-LucasResNet-16 models for the prediction of soil properties based on the original 
spectra (4200 data points) and downsampled spectra (195 data points) in the best spectral pre-processing source. R2, coefficient of determination. 

Fig. 7. Distribution of the relative contribution from feature wavelengths to each soil property in the testing set of the LucasResNet-16 model. (a) OC content; (b) N 
content; (c) P content; (d) K content; (e) CEC; (f) pH; (g) CaCO3; (h) soil texture (four groups); (i) soil texture (12 levels). 
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4. Discussion 

4.1. Prediction accuracy of soil properties 

In this study, we built three 16-layer DCNN models (LucasResNet-16, 
LucasVGGNet-16, and multi-LucasResNet-16) to predict different soil 
properties from the LUCAS spectral library. The regression predictions 
of soil OC content, N content, CEC, pH, and CaCO3 content based on the 
original spectra all achieved high accuracy (Table 3). These results are 
consistent with those of Viscarra Rossel and Webster (2012), who used 
ordinary least-squares regression to predict 24 soil properties based on 
Vis-NIR spectral data of approximately 20,000 soil samples taken across 
Australia. The moderate prediction accuracy of soil K content and poor 
prediction accuracy of soil P content could be attributable to a narrow 
chemical range of these two variables. They have poor correlations with 
primary soil variables such as OC, clay, and CaCO3 contents that are 
more directly assessed by Vis-NIR spectroscopy (Chang et al., 2001; 
Volkan Bilgili et al., 2010). 

Comparing the two single-task DCNN models built in this study, we 
found that the prediction accuracy of LucasResNet-16 was slightly better 
than those of LucasVGGNet-16 for most soil properties (Table 3). This 
result suggests that implementing LucasResNet-16 with residual 
learning can alleviate the problem of gradient disappearance in a DCNN, 
which, in turn, improves the model accuracy and stability at later stages 
of calibration (He et al., 2016). Additionally, we found that the single- 
task DCNN models tended to underestimate the high values of soil 
properties. This is because in the high value region with less data, the 
model learning is insufficient. 

To further gain insight into the performance of different modeling 
approaches for soil properties, we compared our 1D single-task and 
multi-task DCNN models with the 1D LSTM (Singh and Kasana, 2019), 
2D CNN and 2D multi-CNN (Padarian et al., 2019a), and 1D local multi- 
CNN (Tsakiridis et al., 2020) models reported in previous studies 
(Table 7). We found that compared with 1D LucasResNet-16, the pre-
diction performance of 1D multi-LucasResNet-16 was slightly improved 
for most soil properties. In the case of single-task modeling, compared 

with 1D LSTM, our 1D LucasResNet-16 model reduced RMSE by 14.7%, 
16.8%, 9.0%, and 22.1% for soil OC, N, CEC, and pH, respectively. 
Compared with 2D CNN, our 1D LucasResNet-16 model reduced RMSE 
by 38.3%, 37.9%, 28.4%, and 34.6% for soil OC, N, CEC, and pH, 
respectively. As for multi-task modeling, compared with 1D local multi- 
CNN, our 1D multi-LucasResNet-16 model reduced RMSE by 9.4% and 
6.2% for soil pH and CaCO3, respectively. Compared with 2D multi- 
CNN, our 1D multi-LucasResNet-16 model reduced RMSE by 8.4% and 
38.5% for soil N and pH, respectively. 

The results showed that DCNN was superior to the single-task 
shallow CNN for predicting specific soil properties, as deeper layers 
can learn more complex structures (Lecun et al., 2015; Zhang et al., 
2016). Additionally, the multi-task DCNN model outperformed the 
single-task DCNN model. This is primarily because a multi-task DCNN 
model considers the correlation between soil properties, such as pH and 
CaCO3 (r = 0.52, P < 0.01), in addition to P and K (r = 0.34, P < 0.01; 
Fig. 8), and the improvement of the modeling performance can be 
attributed to the high correlation between these properties. 

Table 6 
The top 10 feature wavelengths that contributed most to different soil properties in the testing set of the LucasResNet-16 model.  

Soil properties Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10 

OC 2309 2357 2319 2355 2180 2369 2219 2345 2356 2359 
N 2055 2059 2054 2393 2337 783 595 2345 587 787 
P 667 664 931 1716 1960 663 1963 1962 1959 1714 
K 2106 674 874 2104 834 1986 2107 675 2105 676 
CEC 2178 2347 1731 2177 584 1418 1419 595 2345 593 
pH 722 2010 1666 1682 706 1994 1698 714 1658 1594 
CaCO3 1998 1994 1999 1997 1995 2002 1996 1991 2004 2003 
Soil texture (four groups) 1414 2208 1358 1416 2376 1346 2344 2176 2360 1342 
Soil texture (12 levels) 1415 1411 1416 1417 2377 2371 2378 2359 1369 2402  

Table 7 
Comparison of R2 and RMSE on the testing set of 1D single-task and multi-task DCNN models built in this study with the results of other studies using all soil samples 
(mineral and organic).  

Model Assessment indicators OC N CEC pH CaCO3 P K 

1D LucasResNet-16 (this study) R2  0.952  0.935  0.822  0.941 0.960 0.372 0.591  
RMSE  19.837  0.957  6.142  0.327 24.908 24.649 131.071 

1D multi-LucasResNet-16 (this study) R2  0.955  0.933  0.794  0.942 0.961 0.395 0.593  
RMSE  19.130  0.971  6.614  0.326 24.526 24.184 130.706 

1D LSTM (Singh and Kasana, 2019) R2  0.940  0.910  0.770  0.900 NA NA NA  
RMSE  23.250  1.150  6.750  0.420 NA NA NA 

2D CNN (Padarian et al., 2019a) R2  0.880  0.830  0.660  0.870 NA NA NA  
RMSE  32.140  1.540  8.580  0.500 NA NA NA 

1D local multi-CNN (Tsakiridis et al., 2020) R2  0.970  0.940  0.820  0.930 0.960 NA NA  
RMSE  15.180  0.930  5.990  0.360 26.150 NA NA 

2D multi-CNN (Padarian et al., 2019a) R2  0.690  0.600  0.630  0.840 NA NA NA  
RMSE  16.820  1.060  6.510  0.530 NA NA NA 

CNN, convolutional neural network; LSTM, long short-term memory network; NA, not available. 

Fig. 8. The correlation between soil properties for samples of the LUCAS 
topsoil dataset. * P < 0.05; ** P < 0.01. 
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Interestingly, despite the high correlation between OC and N (r = 0.92, 
P < 0.01), the performance of multi-task modeling for N was not 
improved. A plausible reason is that N also had a high correlation with 
CEC (r = 0.59, P < 0.01), and multi-task modeling probably ignored 
some of their features. In summary, a multi-task DCNN model can 
identify features that are important for all soil properties; it contains 
additional soil properties that may offer more noise than information 
(Tsakiridis et al., 2020), and tends to ignore some subtle features. 
Therefore, one should consider whether to choose the single-task or 
multi-task model based on the soil properties to be predicted. The 
modeling performance can also be improved by adding suitable auxil-
iary tasks for one task. 

It is suitable for CNN processing to convert 1D spectral signal into 2D 
spectrogram by decomposing into overlapping fragments (Padarian 
et al., 2019a,b). However, this may affect the continuity of the spectral 
features related to soil properties, which, in turn, influences the pre-
diction accuracy (Ng et al., 2019). We can also conclude that 1D CNN is 
superior to 2D CNN in the case of single-task or multi-task modeling 
(Table 7), which is in agreement with the study of Ng et al. (2019). 
Therefore, we did not convert 1D spectra into 2D spectrogram for 
modeling the soil properties. In general, the DCNN modeling applied to a 
large spectral library offers a certain advantage, especially in the case of 
only using the original spectra. 

4.2. Classification accuracy of soil texture 

Compared with LucasVGGNet-16, the LucasResNet-16 model per-
formed better for classification predictions of soil texture (Table 4). 
Riese and Keller (2019) also proposed a LucasCoordConv model with an 
additional coordinate layer that achieved an overall accuracy of 0.73 to 
classify soil texture into four groups using the LUCAS dataset. In addi-
tion, Hu et al. (2015) constructed an improved CNN model for hyper-
spectral image classification with an overall accuracy of 0.74. More 
recently, Zhong et al. (2020) used a multilayer perceptron model to 
classify soil texture into four groups and 12 levels based on hyper-
spectral data of 245 samples, achieving a respective overall accuracy of 
0.68 and 0.55. Our DCNN models showed comparable or even higher 
accuracy in the classification of soil texture, and most of our incorrectly 
predicted samples were misclassified into classes similar to the actual 
soil texture (Figs. 4 and 5). 

For the four groups of classification, the ranked accuracy for different 
soil texture classes was loam > clay > clay loam > sand; samples were 
most easily misclassified as loam and clay loam (Figs. 4a and 5a). For the 
12 levels of classification, the ensuing ranking of accuracy was sandy 
loam > clay > sand and loamy sand > silty clay loam and silty clay >
clay loam and loamy clay > silty loam > sandy clay loam > loam >
sandy clay and heavy clay; samples were most easily misclassified as 
sandy loam, clay loam, silty clay loam, loamy clay, and silty clay 
(Figs. 4b and 5b). Both sets of results are consistent with frequent mis-
classifications near the class boundaries as noted by Chawla et al. 
(2004). The misclassifications occur because samples near the bound-
aries and intersections are more alike in their percentage content of each 
particle size, with a texture class and spectral features closely resembling 
each other. This is why the classification accuracy of loam and sandy 
clay loam was low in our study; these two classes were easily mis-
classified as sandy loam and clay loam were similar in terms of texture. 
In addition, it is easy to mistakenly classify soil texture classes from large 
sample sizes, mainly because when the number of samples is unbalanced 
the model can learn more feature information for classes during cali-
bration (Zhong et al., 2020). Conversely, sandy clay and heavy clay 
cannot be classified at all because of the small number of samples and 
the insufficient feature learning. 

4.3. Effects of data pre-processing 

DCNN is able to achieve high prediction accuracy based on the 

original spectra, which saves the time spent in data pre-processing and 
thereby improves the efficiency of real-time monitoring (Padarian et al., 
2019a; Xu et al., 2019; Zhang et al., 2019a). However, we still found that 
spectral transformation (especially SG1) was effective for the prediction 
of some soil properties by DCNN modeling (Table 5, Fig. 6), which is 
consistent with the results of Tsakiridis et al. (2020) and Haghi et al. 
(2021). In contrast, spectral downsampling led to a reduction in the 
modeling accuracy (Table 5, Fig. 6), mainly because the reduction in 
data dimension could change the original pattern of spectral signals and 
cause the loss of useful information (Zhang et al., 2019a). Moreover, 
deep learning approaches can discover intricate structures in 
high-dimensional data, while reducing the need for prior knowledge and 
human effort for feature engineering (Lecun et al., 2015). Therefore, the 
DCNN models built in this study do not need spectral dimension 
reduction for the prediction of soil properties based on a large soil 
spectral library. 

4.4. Spectral feature wavelengths contributing to soil properties 

The results of this study showed that the position of feature wave-
lengths related to different soil properties were not alike, with multiple 
characteristic peaks generally present (Fig. 7, Table 6). First, OC has 
distinct spectral characteristics in the near-infrared region (Viscarra 
Rossel and Behrens, 2010), which are mainly attributed to the C–H of 
hydrocarbyl groups (1340–1380 nm), as well as the N–H of amide 
groups and the O–H of hydroxyl groups (1860–1900 nm) (Castaldi et al., 
2018). The feature wavelengths of OC can also be related to lignin 
(1600–1800 nm) and cellulose (2100 nm), in addition to phenol, amide, 
and aliphatic groups (2300 nm) (Ben-Dor et al., 1997). Second, N is the 
main component of soil organic matter, so a strong correlation between 
the two, at 595 and 783 nm, is expected. These two wavelengths are 
consistent with the 550–700 nm reported by Galvao and Vitorello 
(1998) and the 600–800 nm reported by Ji et al. (2012) as sensitive 
wavelengths of organic matter. The remaining feature wavelengths of N 
are mainly related to the N–H of amino and amide groups (Zhang et al., 
2019b). 

The main feature wavelengths of P and K were relatively close 
(Fig. 7), which could explain the poor prediction accuracy of soil P and K 
contents. The wavelength positions of P and K are mainly related to iron 
oxides, water, and carboxyl groups (Viscarra Rossel and Webster, 2012; 
Volkan Bilgili et al., 2010). The feature wavelengths of CEC are similar 
to previous findings of Viscarra Rossel and Webster (2012), which are 
related primarily to iron oxides and clay minerals. The feature wave-
lengths of pH are mainly related to key chemical bonds, such as the O–H 
of carboxyl groups, the C–H of aromatic compounds, and the N–H of 
amino groups. The feature wavelength of CaCO3 is related to the C=O 
near 1998 nm (Viscarra Rossel et al., 2016). 

Considering soil texture, the feature wavelengths related to the four 
groups and 12 levels of classification were very similar (Fig. 7, Table 6). 
Soil texture influences soil spectral reflectance mainly through soil 
moisture content and particle size distribution (Bedidi et al., 1992). The 
soil with higher clay content absorbs more water, resulting in stronger 
absorption bands at 1400 and 1900 nm. Conversely, the soil with finer 
particles has smaller inter-particle spaces and smoother surfaces, which 
contributes to higher spectral reflectance. The feature wavelength of 
1400 nm is mainly linked to water, and the wavelengths around 2208 
and 2376 nm are principally related to clay minerals, such as kaolinite, 
montmorillonite, and illite (Peng et al., 2014; Castaldi et al., 2019). 

Generally, CNN modeling requires a huge amount of data and 
computing power, and many hyperparameters need to be adjusted 
(LeCun et al., 2015; Zhu et al., 2017; Ng et al., 2019; Yuan et al., 2020). 
However, the prediction accuracy of DCNNs is usually better than that of 
traditional machine learning methods. Therefore, DCNNs provide useful 
tools for soil spectral modeling. 

L. Zhong et al.                                                                                                                                                                                                                                   



Geoderma 402 (2021) 115366

12

5. Conclusions 

This study explored the modeling potential of DCNNs when applied 
to a large soil spectral library. Two single-task 16-layer DCNN models 
were successfully used to make regression predictions of seven soil 
properties and classification predictions of soil texture. We also assessed 
the effects of data pre-processing and the performance of multi-task 
DCNN modeling. Based on the original spectra, the DCNN models 
built in this study can predict most soil properties with high accuracy. 
Our models outperform the single-task shallow CNN architecture pro-
posed in previous studies and other traditional machine learning 
methods. DCNNs do not need spectral dimension reduction for modeling 
soil spectral data. The application of deep learning tools has changed 
multiple fields of knowledge, including computer vision, natural lan-
guage processing, and medical image analysis. Our study soundly 
demonstrates the modeling potential of deep learning for soil properties 
based on soil spectral data, enabling the timely adjustment of agricul-
tural management measures and sustainable land use. This study also 
provides basic data for real-time quantitative monitoring of changes in 
soil properties, soil quality assessments, and crop yield estimations, 
which are also useful for attaining the goal of precision agriculture. 
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